If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-12x-45=0
a = 3; b = -12; c = -45;
Δ = b2-4ac
Δ = -122-4·3·(-45)
Δ = 684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{684}=\sqrt{36*19}=\sqrt{36}*\sqrt{19}=6\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{19}}{2*3}=\frac{12-6\sqrt{19}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{19}}{2*3}=\frac{12+6\sqrt{19}}{6} $
| 3x^2-12x-65=0 | | 6^x-2=26 | | -3x-54=12x | | X-(7-3x)=2(2x+2) | | 7(1-y)=-3(y-) | | -x11=-7 | | (x+3)^2=-289 | | -m-2=7 | | 2+4k=-2 | | 5m+5.75=38.35 | | X+8=40-2x | | 14=2(20-x) | | 10=4+n | | 11-27r=578 | | y+-2.53=6.8 | | 5x+8=7x–72= | | (a/2)-7/8=-3/8 | | r2=6 | | 11(k-1)=7(k-4) | | 8(2^(x-3))=48 | | F(x)=(3x-2x^2)5 | | 2t=20-2t | | 11k-11=7k-28 | | 21-6x=-14 | | 12=1/4(x+4) | | 11(k-1=7(k-4) | | 1.2x^2-20x+300=0 | | C´(x)=1.2x^2-20x+300=0 | | -5(f-81)=-40 | | x+x-3+x-2+x-1.5=8.5 | | 4x+11=12X+9 | | (5x-43)=(4x-11)x= |